



International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.01, pp 316-322, 2014-2015

# Groundwater Quality Assessment using WQI In South Coimbatore, Tamil Nadu, India

# Kalaivani.S\* and K. Ramesh

<sup>1</sup>Department of Civil Engineering, Jeppiaar Engineering College, Chennai119, India <sup>2</sup>CWR, Department of Civil Engineering, Anna University, Chennai –25, India

**Abstract:** Groundwater quality of South Coimbatore evaluated by Water Quality Index.water Quality Indexis used to determine the suitability of groundwater for drinking purpose conforming to World Health Organisation (WHO) standards was followed. However the present study, the Bureau of Indian Standard values have been adopted. For understanding the quality of groundwater twenty six groundwater samples were collected in pre monsoon (August 2013) and post monsoon (January 2014) seasons via, open wells and bore wells. The samples are tested analyzed physical and chemical parameters. pH range in pre monsoon season is 7 to 11 during 6.9 to 10.9. Total dissolved solids in the study area is relatively high in pre monsoon 84% of groundwater samples in pre monsoon and 76% samples exceed BIS limit. The groundwater quality in the study area major is mixed CaHCO<sub>3</sub> type and few samples mixed CaCl type of in both the pre monsoon and post monsoon this category is reduced according to WQI.

Keywords: Groundwater, GIS(Geographical Information System), BIS(Bureau of Indian Standards).

## Introduction

Groundwater is one of the great natural resource in the Biosphere (3). Freshwater is a finite and a vulnerable resource, essential to sustain life, development and the environment. Groundwater though contributes only 0.6% of the total water resources on earth, it accounts for nearly 80% of the rural domestic water needs and 50% of the urban water needs in the developing countries like India (10). Water Quality is an important factor to judge environment changes, which are strongly associated with social and economic development. The evaluation of water in the developing countries has become a critical issue in recent years, especially due to the concern that fresh water will be scarce in near future. Water form a certain source may be good enough for drinking without any treatment but it may not be suitable as a coolant in an industry. It may be good for irrigating certain crops but not for certain other crops (11). Water quality index is a means to summarize large amounts of water quality data into simple terms for reporting to management and the public in a consistent manner. Similar to the ultra violet (UV) index or an air quality index, it tells us whether the overall quality of water bodies poses a potential threat to various uses of water. WQI is a set of standards used to measure changes in water quality in a particular river reach over time and make comparisons from different reaches of a river. A WQI also allows for comparisons to be made between different rivers. This index allows for a general analysis of water quality on many levels that affect a stream's ability to host life (12).

The objectives of the present study are (1) To identify the suitability of groundwater for domestic and irrigation purpose (2) To determine the spatial variation water quality by using water quality index.

#### **Study Area**

Coimbatore is the second largest Metropolitan city and urban agglomeration after Chennai in Indian state of Tamil Nadu. It is one of the fastest growing tier-II cities in India and major textile, Industrial, Commercial, Educational and manufacturing hub of Tamil Nadu. Coimbatore is situated in the West of Tamil

Nadu, bordering the state of Kerala. It is surrounded by the Western Ghats mountain range on the West and North, with reserve forests and the (Nilgiri Biosphere Reserve) on the northern side. The Noyyal River runs through Coimbatore and forms the Southern boundary of the corporation. The city sits amidst Noyyal's basin area and has an extensive tank system fed by the river and rainwater. The area is elevated from 234m to 420m above the mean sea level and geographical area is 655 km<sup>2</sup>. It is located between 10°45'3.6" N to 11°0'9.72" N Latitude and 76°52'14.52" E to 76°59'37.68" E Longitude. The figure 1 shows the study area map.

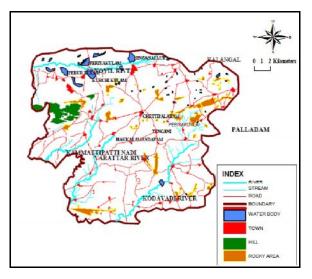



Fig 1. Location of the Study Area Map

The weather is pleasant during the period from November to January. Morning, in general, is more humid than the afternoons, with the humidity exceeding 78% on an average. In the period June to November the humidity in afternoon exceeds 66% on an average. In the rest of the year the afternoon is the driest one. Rainfall variation graph of study area from year 2000 to year 2012 is shown in figure 2

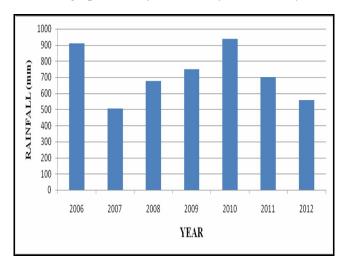



Fig 2 Rainfall Variation of the Study Area

#### **Materials and Methods**

Major Elements were analyzed from 26 groundwater samples were collected and analyzed viz open wells, bore wells. The primary data of study are collected through the groundwater samples via open wells, bore wells. The groundwater samples of both pre-monsoon season and post-monsoon season are needed for assessing the seasonal variation of groundwater in study area. The sampling location of groundwater samples shown in figure 3 and groundwater samples collection detail shown in table 1.

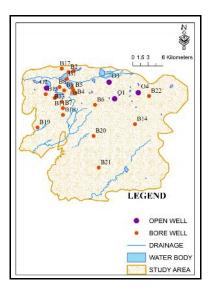



Figure 3 Well Location Map of the Study Area

| SI. | Location            | Type of well Sl. Loc   |    | Location          | Type of well |
|-----|---------------------|------------------------|----|-------------------|--------------|
| No  |                     | N                      |    |                   |              |
| 1   | Periyakulam         | Bore well              | 14 | Ramachettipalayam | Bore well    |
| 2   | Ukkadam             | Bore well              | 15 | Perur kulam       | Open well    |
| 3   | Kurchikulam         | Bore well              | 16 | Perur             | Bore well    |
| 4   | Gandhiji road       | Bore well              | 17 | Tellungupalayam   | Bore well    |
| 5   | Sundarapuram        | Bore well              | 18 | Chokkan pudhur    | Bore well    |
| 6   | Kurchi housing unit | Bore well              | 19 | Singanallur       | Open well    |
| 7   | Madukarai road      | Bore well              |    | Elginagar         | Open well    |
| 8   | Niyanapuram         | Bore well              | 21 | Sundakamuthur     | Bore well    |
| 9   | Kuniyamuthur        | Kuniyamuthur Bore well |    | Madukarai         | Bore well    |
| 10  | Kulathupalayam      | Bore well 2            |    | Ettimadai         | Bore well    |
| 11  | Kovaipudhur         | Bore well 2            |    | Othkal mandabam   | Bore well    |
| 12  | Valan kulam         | Bore well              | 25 | Kinathukadavu     | Bore well    |
| 13  | Sundakkamuthur      | Open well              | 26 | Pattanam          | Open well    |

Table 1 Groundwater sample collection detail

The groundwater samples were collected by Simple Random Sampling method. The main reason for analyzing the water quality is follow (1) to know the existing quality of Water (2) to compare with its standard. The general procedure for sample collecting, testing and analysis were carried out according to general procedure. The physical observations of the samples are colourless and odourless in natures. The range and mean of physic-chemical parameters of 26 groundwater samples of the study area for both pre-monsoon and post-monsoon seasons are shown in table 2. From the data, the following observations were made for different parameters.

Table 2 Physico-chemical parameters of groundwater samples

| Water<br>Quality<br>Parameters | Pre-mo   | onsoon  | Post-monsoon |         | BIS<br>standard<br>(2009) | Samples exceeding desirable limits |                     |
|--------------------------------|----------|---------|--------------|---------|---------------------------|------------------------------------|---------------------|
|                                | Range    | Mean    | Range        | Mean    | Desirable                 | Pre-monsoon                        | Post-monsoon        |
| pН                             | 6.9-10.9 | 7.47    | 6.9 -7.8     | 7.26    | 6.5-8.5                   | Nil                                | 23                  |
| Total                          | 345.6-   | 1237.10 | 435.2-       | 1329.72 | 500                       | 1,2,4,5,6,7,8,9,10,                | 1,2,4,5,6,7,8,9,10, |
| Dissolved                      | 2467.2   |         | 2457.6       |         |                           | 11,12,13,15,16,17,                 | 11,12,13,15,        |
| Solids                         |          |         |              |         |                           | 18,19,20,21,22,24,25               | 16,17,18,19,20,     |
|                                |          |         |              |         |                           | and 26                             | 21,22,25 and 26     |
| Total                          | 180-1660 | 748.23  | 140-1460     | 676.15  | 300                       | Except 21,22, 23,                  | Except 19,20,       |
| hardness                       |          |         |              |         |                           | 24,25,26                           | 21,22, 23,24,25,26  |
| Calcium                        | 60-1280  | 518.26  | 60-1280      | 512.69  | 75                        | Except 24                          | Except 24           |

| Magnesium   | 0-380     | 230.73 | 30-440     | 163.46 | 30  | Except 6 and 20        | Except 20            |
|-------------|-----------|--------|------------|--------|-----|------------------------|----------------------|
| Sodium      | 9.6-59.5  | 70.96  | 5.2-182.17 | 100.82 | 200 | 5 and 7                | Nil                  |
| Potassium   | 2.5-434.5 | 88.7   | 2-376.5    | 165.66 | -   | -                      | -                    |
| Chloride    | 45-544.83 | 218.63 | 32.65-     | 200.3  | 250 | 1, 2, 5,9, 17, 19 and  | 1, 2, 5, 9,13 and 17 |
|             |           |        | 394.43     |        |     | 26                     |                      |
| Bicarbonate | 366-1689  | 702.54 | 122-622    | 95.63  | 300 | 2,3,4,6,7,8,9,1015,16, | Nil                  |
|             |           |        |            |        |     | 1825,26                |                      |
| Sulphate    | 8.65-20.6 | 17.06  | 10.13-29.7 | 19.31  | 200 | Nil                    | Nil                  |

Note: All units are in mg/L except pH

#### **Hydrochemical Facies**

A piper diagram is a graphical representataion of the chemistry of water sample developed by A. M. Piper (1944). The cations and anions are shown by separate ternary plots. The apexes of the cations plot are calcium, magnesium and sodium plus potassium. The apex of the anions plot are sulphate, chloride and corbonate plus hydrogencarbonate.

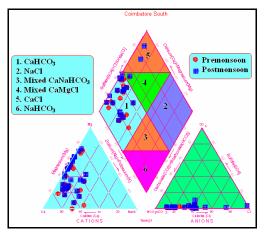



Figure 4 Piper plot for Groundwater Sample in Pre-monsoon and Post-monsoon Season

Chemical data of representative samples from the study area presented by plotting them on piper-trilinear diagram for pre monsoon and post monsoon in figure 5.5. The plot shows that majority of groundwater samples fall in the field of mixed CaHCO<sub>3</sub> type and few samples are mixed CaCl type facies of water in both the pre monsoon and post monsoon season.

#### Water Quality Index

The procedure adopted by Ramakrishnaiah et al., 2009 by developing Water Quality Index to determine the suitability of groundwater for drinking purposes conforming to World Health Organisation (WHO) standards was followed. However the present study, the Bureau of Indian Standards standard values have been adopted. The parameters considered for the calculation of the index included pH, TDS, TH, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, HCO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>. There were three steps to computing the WQI of a water sample. In the first step, each of the chemical parameters was assigned a weight (w<sub>i</sub>) based on their perceived effects on primary health. The highest weight of five was assigned to parameters, which have the major effects on water quality. The second step involved computing the relative weight (Wi) of each parameter using the equation given below;

$$W_i = W_i / \sum W_i$$

Where,  $\sum w_i$  is the sum of the weights of all the parameters. To compute quality rating scale,  $q_i$  by using the equation given below;

 $q_i = C_i / S_i * 100$ 

Where, Ci and Si –concentration and the BIS standard for each parameter, in mg/L

WQI =  $\sum SI_i$ 

 $SIi = Wi * q_i$ 

Where SI i is the sub index of i<sup>th</sup> parameter

In this study,  $\sum w_i$  was 26. Table 3 presents the  $w_i$ . Wi and the Bureau of Indian Standards for each chemical parameter used in this study. Computed Water Quality Index is usually classified into five categories as given in 4.

| Physico-chemical parameters     | IS standard Desirable | Weight | <b>Relative weight W</b> |
|---------------------------------|-----------------------|--------|--------------------------|
|                                 | Limit                 | Wi     |                          |
| pH                              | 6.5-8.5               | 4      | 0.15384                  |
| Total Dissolved Solids (TDS)    | 500-2,000             | 4      | 0.15384                  |
| Total Hardness (TH)             | 300-600               | 2      | 0.07692                  |
| Bicarbonate (HCO <sub>3</sub> ) | 244-732               | 3      | 0.11538                  |
| Calcium (Ca)                    | 75-200                | 2      | 0.07692                  |
| Magnesium (Mg)                  | 30-100                | 2      | 0.07692                  |
| Sodium (Na)                     | 200                   | 2      | 0.07692                  |
| Chloride (Cl)                   | 250-1,000             | 3      | 0.11538                  |

#### **Table 4 Classified of Water Quality Index**

| WQI Value | Classification                |  |  |
|-----------|-------------------------------|--|--|
| <50       | Excellent water               |  |  |
| 50-100    | Good water                    |  |  |
| 100-200   | Poor water                    |  |  |
| 200-300   | Very poor water               |  |  |
| >300      | Water unsuitable for drinking |  |  |
| >300      | Water unsuitable for drinking |  |  |

The spatial and seasonal variations of WQI are shown in figure 4 by using GIS. It shows that the Northern part of the area is more affected by groundwater quality compared to the Southern part during pre-monsoon season which is due to the geogenic and anthropogenic factors. In Northern part considering anthropogenic, Singanallur, Kurchi areas are highly industrial practicing zone, and they discharge effluent in that areas. In Southern part of the study area categorized between poor to good water quality in pre-monsoon. During postmonsoon season, Northern part, central area water quality changes from poor to good due to rainfall. In Southern part area slightly changed as good category. WQI value of study area shown in table 5.

| Sample<br>no | WQI (pre-<br>monsoon<br>2012) | Classification                | WQI (post-<br>monsoon 2013) | Classification                |
|--------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|
| 1            | 266.84                        | Very poor water               | 236.07                      | Very poor water               |
| 2            | 330.84                        | Water unsuitable for drinking | 266.822                     | Very poor water               |
| 3            | 97.61                         | Good water                    | 95.27                       | Good water                    |
| 4            | 250.86                        | Very poor water               | 162.85                      | Poor water                    |
| 5            | 293.6                         | Water unsuitable for drinking | 172.07                      | Poor water                    |
| 6            | 250.86                        | Very poor water               | 126.54                      | Poor water                    |
| 7            | 324.41                        | Water unsuitable for drinking | 159.4                       | Poor water                    |
| 8            | 190.95                        | Poor water                    | 153.30                      | Poor water                    |
| 9            | 323.06                        | Water unsuitable for drinking | 280.23                      | Very poor water               |
| 10           | 264.23                        | Very poor water               | 226.85                      | Very poor water               |
| 11           | 211.06                        | Very poor water               | 116.85                      | Poor water                    |
| 12           | 139.78                        | Poor water                    | 122.8                       | Poor water                    |
| 13           | 381.65                        | Water unsuitable for drinking | 351.17                      | Water unsuitable for drinking |

| 14 | 193.109 | Poor water      | 163.04 | Poor water      |
|----|---------|-----------------|--------|-----------------|
| 15 | 266.62  | Very poor water | 193.25 | Poor water      |
| 16 | 210.10  | Very poor water | 167.26 | Poor water      |
| 17 | 243.23  | Very poor water | 199    | Poor water      |
| 18 | 281.40  | Very poor water | 211.54 | Very poor water |
| 19 | 294.5   | Very poor water | 149.52 | Poor water      |
| 20 | 161.36  | Poor water      | 123.6  | Poor water      |
| 21 | 189.50  | Poor water      | 166.5  | Poor water      |
| 22 | 134.12  | Poor water      | 110.2  | Poor water      |
| 23 | 129.4   | Poor water      | 103.07 | Poor water      |
| 24 | 54.94   | Good water      | 34.57  | Good water      |
| 25 | 261.10  | Very poor water | 234.01 | Very poor water |
| 26 | 198     | Poor water      | 164.5  | Poor water      |

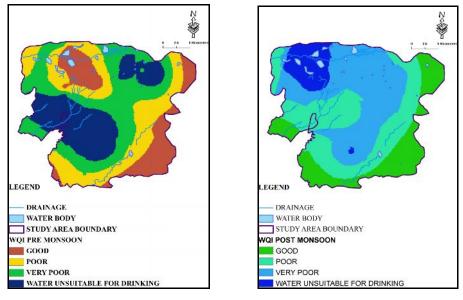



Fig 5 Spatial and Seasonal Variations of WQI in the Study Area

Figure 5 inferenced seasonal and spatial variation WQI in the study area. In pre monsoon season North West part is under unsuitable category and in South part under good category. Industrial activities in Madukarai area are relatively high especially the untreated effluent from cement factory, dying industries. In post monsoon the unsuitable for drinking reduces and it classified as very poor water. In post monsoon season good category of water quality is increased due to rainfall. Industrial activities is moderately less in Southern part of the area than Northern part.

#### Conclusions

In domestic purpose the water quality in Southern part of the study area water quality comparatively well than Northern part of the study area. Bicorbonate and harness are dominant ions in the study area. Industrial and waste disposal from the area are main reason for this dominate ions. The result of calculation of WQI shows in pre-monsoon season 19% of groundwater samples are under water for unsuitable category while post-monsoon 7% of groundwater samples fall in water unsuitable for drinking. The effect of the topography on the groundwater quality it is noted that there is a lower salt contents in the elevated terrains and higher salt contents in the lower elevation in this area which has steep gradient. From the present study it is evident that groundwater quality is gradually getting deteriorated and it may deteriorate future from spatial and seasonal variations.

## References

- 1. K.L.Prakash and R.K. Somashekar., Groundwater quality Assessment on Anekal Taluk, Bangalore Urban district, India, Journalof Environmental Biology, 2006, 27(4) 633-637 (2006).
- 2. S.Sathish kumar and S.Ravichandran., Groundwater quality assessment in Cheyyar region, Int. J. of ChemTech research, 2011, 3(3) 1060-1063.
- 3. Masood Alam, Sumbul Rais and Mohd Aslam., Hydrochemical investigation and quality assessment of groundwater in rural areas of Delhi, India, Environ Earth science, 2012 66:97-110.
- 4. Mohammed Azizur Rahman and Dr.Jackson Roehrig., Estimation of potential recharge and groundwater resources assessment A case study in low barind area, Bangaladesh, Conference on International Agriculture Research Development, 2006 11-13,(2006).
- 5. S.Venkateswaran, M.Elangomannan, M.Suresh and M.Vijay Prabhu., Evaluation of Physico Chemical characteristics in Groundwater using GIS–A case study of Chinnar sub-basin, Cauvery River, tamilNadu, India, CLEAR IJRAGS, 2001(1).
- 6. P.Subramanian and R.Prabhakaran (etal.,) Groundwater Quality Investigation in Andimadam area, Perambalur District, TamilNadu, India. Int.J.of Current Research, 4(5) 168-172 (2012).
- 7. C.Sadashivaiah, C.R.Ramakrishnaiah and G.ranganna., Hydrochemical Analysis and Evaluation of Groundwater Quality in Tumkur Taluk, Karnataka State, India, Int.J.of Environmental Research and Public Health, 2008 5(3) 158-164.
- Arshid Jehangir and Aasimah Tanveer (etal.,) Geochemistry and Irrigation Quality of Groundwater along River Jehlum in South Kashmir, India, Recent Research in Scinece and Technology, 2011 3(6) 57-63.
- 9. J.Maheswari and K.Sankar, Groundwater Quality Assessment in Vaippar River Basin, TamilNadu, India, International Journal of Current Research, 3(12) 149-152(2011).
- 10. P.bhuvana Jagadeeswari and K.ramesh,water Quality Index for Assessment of Water Quality in South Chennai coastal Aquifer, tamil Nadu, India, Int.J.of ChemTech Research, 4(4) 1582-1588(2012).
- 11. Er.Srikanthan Satish Kumar darapu and Er.B.Sudhakar (etal.,), determining water Quality Index for the Evaluation of Water Quality of River Godavari, Int.J.of Engineering Research and Applications, 1(2) 174-182.
- 12. Mahesh Kumar Akkaraboyina and B.S.N.Raju Assessment of Water Quality Index of River Godaveri at Rajahmundry, Universal Journal of Environmental Research and Technology, 2(3) 161-167.